1 はじめに

インターネットの普及に伴い,欧州では IP4 アド レスが完全に枯渇しており,アジアでもあと数年しか もたないことが予想されている.そのため,以前から IP6 アドレスへの移行が促されているが,それぞれの プロトコル間で互換性がなく,回線のスピードが遅い などの理由から,普及が遅れているのが現状である. しかし,最近では新しい接続方式による回線スピード の高速化やスマートフォンの対応により,今後は加速 的に普及が広まっていくことが予想される.このこと に対応するため,IP6 アドレスについて実習を通して 学ばせる必要があるが,機器の台数不足の問題から基 礎知識についての習得のみとなっている.

そこで、本研究では実習形式で学習できる仮想環境 を構築し、適切な教材を作成することにより、この分 野に関するより効果的な訓練を実施することを目的と する.

2 現状の課題

IP6アドレスに関する学習は、1年次後期に専門教 科心修の「コンピュータネットワークI」の科目にて 座学で基礎知識を習得させる授業が行われている.し かし、座学だけでは習得することができない訓練内容 がある.例えば、IP6アドレスが設定されたネットワ ークによるトラブルシューティングは、実際にネット ワーク機器を通して、どの箇所にどのような問題点が あるのかを操作しなければなかなか身につかない技術 である.

3 解決方法の選択

ネットワーク機器を使って、IPv6 アドレスを使用したネットワーク技術を学習するためには、下記の表 1 のような機器が必要である.

表1 実習で必要な機器等

機器等	数量	
ファイアウォール	2台	
ルーター	2台	
スイッチ	5台	
サーバー	2台	
クライアントPC	3台	
LANケーブル	約20本	

情報技術科 江島 俊文

このように実際に必要な数のネットワーク機器を用 意することが授業では最も望ましい.しかし、これら の機器を用意するためには多くの予算を必要とし、機 器を設置する場所を実習室内に確保しなければならな い.

そこで、このことを解決するためにはもう一つの選 択肢である、ハードウェアのネットワーク機器を仮想 化ソフトウェアで仮想化することが考えられる.この ソフトウェアの利点は、仮想でネットワーク機器を構 築する台数には論理的に制限がないことである.また、 この仕組みを使用すること OS 及びソフトウェアの部 分は実際の機器と操作方法が同じであるため体感訓練 の効果も得られる.さらに、仮想化ソフトウェアはフ リーソフトも存在するため、学生は自宅でも短大校と 同じ実習環境を構築することが可能となるので、学習 練効果はさらに高まると考えられる.

4 実習環境の構築

VMware(R) Workstation 10.07 という仮想化ソフトウ ェアを使用して仮想化できるハードウェアを下記の 表2のように構築した.こうすることでそれぞれの 仮想化ハードウェアに OS である VyOS 1.1.8 や CentOS Linux release 7.5.1804 (Core) をインストールする ことが可能となる.その後はそれぞれの用途に応じ たネットワーク機器を構築することができる.

機器等	仮想化 ハード ウェア	OS	数量
ファイアウォール	Linuw	WOS	4台
ルーター	LIIUX	vyus	5台
スイッチ	VMware		7台
サーバー	Limm ContOS	1台	
クライアントPC			3台
LANケーブル	VMware		約20本

表2 仮想化したハードウェアの一覧

5 カリキュラムの構成

5.1 IPv6ネットワーク基本構成の設定

最初にこれから構築する IPv6 ネットワーク構成図 を作成する.作図ソフトはインターネットに接続する ことができるパソコンでは、無料で使用することが可 能なフリーソフトウェアを選定した.このため、学生 は自宅でも実習環境の構築と同様に作図の作成を復習 することができる.次に各種ネットワーク機器を仮想 化ソフトウェアで構築後は、実習を通して下記の図1 を用いて IPv6 アドレスの設定方法や関連コマンドの 使い方を体験させる.

図1基本のネットワーク構成(図

5.2 ルーターによる IPv6 ネットワーク間のデータ 転送経路の設定及び確認

下記の図2を用いて異なるネットワーク間でのデー タ転送を行うためスタティックルートを設定する. 設 定後はネットワークに接続されているそれぞれの PC から ping で疎通テストを実施する. また, ルーティン グテーブルの基本動作や見方などを学習する.

その後は RIPhg と OSPFv3 の 2 種類のダイナミック ルートの設定方法及び特徴について学習する.

図2ルーティングテーブル学習用の構成図

5.3 トラブルシューティング

ダイナミックルートの特徴を確認するために,ネッ トワーク内のルーターを1台ダウンさせる.すると, 経路情報の学習が行われるため、今までと違う経路を 使って通信ができるのでネットワークに支障がないこ とを確認させる. また、ネットワークシステムに問 題が発生した場合には下記の図3のようなルーティン グテーブルやエラーメッセージの見方を学び、情報収 集の方法及び問題箇所を切り分けるための演習を多く 取り入れた.

■ 192 168 180 192:22 - www.mm01: ~ VT	- 0 - X -
ノアイル(F) 編集(E) 設定(S) コントロール(O) ワイントワ(W) 漢子コート(K) ヘルノ(H)	
[edit]	*
vyos@ro01# run show ipv6 route	
Codes: K - kernel route, C - connected, S - static, R - RIPng, O - OSPFv3, I - ISIS, B - BGP, * - FIB route.	
C>* ::1/128 is directly connected, lo	
0 2001:db8:48:1::/64 [110/1] via ::1, 00:38:55	
C>* 2001:db8:48:1::/64 is directly connected, eth0	
0 2001:db8:48:2::/64 [110/1] is directly connected, eth1, 00:41:20	
C>* 2001:db8:48:2::/64 is directly connected, eth1	
D>* 2001:db8:48:3::/64 [110/2] via fe80::20c:29ff:fe0b:e86d, eth1, 00:39:31	
R 2001:db8:48:3::/64 [120/2] via fe80::20c:29ff:fe0b:e86d, eth1, 00:45:04	
_0>* 2001:db8:48:4::/64 [110/3] via fe80::20c:29ff:fe0b:e86d, eth1, 00:39:26	
R 2001:db8:48:4::/64 [120/3] via fe80::20c:29ff:fe0b:e86d, eth1, 00:44:42	
0 2001:db8:48:5::/64 [110/1] is directly connected, eth2, 00:38:55	
C>* 2001:db8:48:5::/64 is directly connected, eth2	
U>* 2001:db8:48:6::/64 [110/2] via fe80::20c:29ff:febf:/e36, eth2, 00:38:1/	
R 2001:db8:48:6::/64 [120/2] via fe80::20c:29ff:febf:/e36, eth2, 00:44:26	
U>* 2001:db8:48:7::/64 [110/3] via fe80::20c:29ff:fe0b:e86d, eth1, 00:39:26	
<pre>r 2001:db0:40:7::704 Li20/3] via reoU::20c:20ff:TeUb:e86d, eth1, 00:44:42 0 * 1-00:x704 is disastly superstal att0</pre>	
C * feou/04 is directly connected, ethl	
TC * Teou704 is directly connected, ethi	
Fadial	
wooffcollt	
190801001# I	•

図3ダイナミックルーティングの例

6 検討事項

今回作成したカリキュラム内容は実習の時間を多く 必要とするため、2年次の「情報工学実習II」の教科 で取り入れた.

しかし、予定していた内容をすべて実施するまでに は至らなかった.そのため、もう少し効率よく授業を 展開していきたい.そして、今回は実施できなかった が VyOSの新しいバージョンでは IP-6 でデフォルトゲ ートウェイを冗長化するための VRRP や複数のファイ アウォールを1台であるかのように動作させるクラス タリングの機能が追加されているため、来年度は授業 の内容に取り入れることができるように動作確認を検 証したい.このような点から今後は IP-4 の内容を少 し減らすことを考慮する必要がある.

7 おわりに

本研究の目的である IPv6 アドレスを使用した実習 環境を構築することができたので授業の中で活用する ことができた.しかしながら,教材に関しては実習環 境で使える用途が広いため実習内容の項目の重要度を 再検討し,構成を新たに考える必要がある.また,実 習用の教材は操作手順の完成度が高すぎると学生は思 考しなくなくなってしまい,トラブルシューティング ができなくなってしまうため,その点を考慮して記載 内容には十分に気をつけたい.